十五、答题卡扫描

suaxi
2025-11-10 / 0 评论 / 7 阅读 / 正在检测是否收录...

1. 流程

  • 答题卡预处理
  • 轮廓检测

    • 答题卡区域
    • 选项区域
  • 透视变换
  • 判题

    • 根据mask判断每个选项的非零点数量(判断该选项是否被选中)


2. 演示

  • 答题卡

    answer_example.png

    answer1.png

  • answer_scan.py

    import numpy as np
    import cv2
    
    # 答案
    answer = {0: 1, 1: 4, 2: 0, 3: 3, 4: 1}
    
    
    def get_points(pts):
        rect = np.zeros((4, 2), dtype="float32")
    
        # 按顺序寻找4个点的坐标(左上,右上,右下,左下)
        # 左上,右下
        s = pts.sum(axis=1)
        rect[0] = pts[np.argmin(s)]
        rect[2] = pts[np.argmax(s)]
    
        # 右上,左下
        diff = np.diff(pts, axis=1)
        rect[1] = pts[np.argmin(diff)]
        rect[3] = pts[np.argmax(diff)]
        return rect
    
    
    def point_transform(image, pts):
        # 获取输入坐标点
        rect = get_points(pts)
        (tl, tr, br, bl) = rect
    
        # 计算输入的w、h,找到最大的
        widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))
        widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))
        maxWidth = max(int(widthA), int(widthB))
    
        heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))
        heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))
        maxHeight = max(int(heightA), int(heightB))
    
        # 变换后的坐标位置
        dst = np.array([
            [0, 0],
            [maxWidth - 1, 0],
            [maxWidth - 1, maxHeight - 1],
            [0, maxHeight - 1]],
            dtype="float32")
    
        # 计算变换矩阵
        M = cv2.getPerspectiveTransform(rect, dst)
        warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight))
        return warped
    
    
    def sort_contours(cnts, method="left-to-right"):
        reverse = False
        i = 0
        if method == "right-to-left" or method == "bottom-to-top":
            reverse = True
        if method == "top-to-bottom" or method == "bottom-to-top":
            i = 1
        boundingBoxes = [cv2.boundingRect(c) for c in cnts]
        (cnts, boundingBoxes) = zip(*sorted(zip(cnts, boundingBoxes),
                                            key=lambda b: b[1][i], reverse=reverse))
        return cnts, boundingBoxes
    
    
    def cv_show(title, img):
        cv2.imshow(title, img)
        cv2.waitKey(0)
        cv2.destroyAllWindows()
    
    
    # 图像预处理
    image = cv2.imread("images/answer1.png")
    contours_img = image.copy()
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    blur = cv2.GaussianBlur(gray, (5, 5), 0)
    cv2.imshow("blur", blur)
    edged = cv2.Canny(blur, 75, 200)
    cv2.imshow("edged", edged)
    
    # 轮廓检测
    cnts = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[1]
    cv2.drawContours(contours_img, cnts, -1, (0, 0, 255), 3)
    cv2.imshow("contours_img", contours_img)
    docCnt = None
    if len(cnts) > 0:
        # 根据轮廓大小排序
        cnts = sorted(cnts, key=cv2.contourArea, reverse=True)
        for c in cnts:
            peri = cv2.arcLength(c, True)
            approx = cv2.approxPolyDP(c, 0.02 * peri, True)
            # 检测到4个角时(即完整的答题卡)进行透视变换
            if len(approx) == 4:
                docCnt = approx
                break
    
    # 透视变换
    warped = point_transform(gray, docCnt.reshape(4, 2))
    cv2.imshow("warped", warped)
    
    # 阈值处理(让OpenCV自行选择合适的阈值)
    thresh = cv2.threshold(warped, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
    cv2.imshow("thresh", thresh)
    thresh_contours = thresh.copy()
    
    # 获取答案选项的轮廓
    cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[1]
    cv2.drawContours(thresh_contours, cnts, -1, (0, 0, 255), 3)
    cv2.imshow("thresh_contours", thresh_contours)
    question_cnts = []
    for c in cnts:
        (x, y, w, h) = cv2.boundingRect(c)
        # 选项的外接矩形
        ar = w / float(h)
        if w >= 20 and h >= 20 and ar >= 0.9 and ar <= 1.1:
            question_cnts.append(c)
    question_cnts = sort_contours(question_cnts, method="top-to-bottom")[0]
    correct = 0
    
    # 遍历每题的选项
    for (q, i) in enumerate(np.arange(0, len(question_cnts), 5)):
        cnts = sort_contours(question_cnts[i:i + 5])[0]
        bubbled = None
        for (j, c) in enumerate(cnts):
            # mask
            mask = np.zeros(thresh.shape, dtype="uint8")
            cv2.drawContours(mask, [c], -1, 255, -1)
            cv_show("mask", mask)
            # 通过计算非零点数量判断该选项是否被选中
            mask = cv2.bitwise_and(thresh, thresh, mask=mask)
            total = cv2.countNonZero(mask)
    
            if bubbled is None or total > bubbled[0]:
                bubbled = (total, j)
    
        color = (0, 0, 255)
        k = answer[q]
    
        # 判断正确
        if k == bubbled[1]:
            color = (0, 255, 0)
            correct += 1
    
        # 标记正确答案
        cv2.drawContours(warped, [cnts[k]], -1, color, 3)
    
    score = (correct / len(answer)) * 100
    print("score: {:.2f}".format(score))
    cv2.putText(warped,
                "score: {:.2f}".format(score),
                (10, 30),
                cv2.FONT_HERSHEY_SIMPLEX,
                0.9,
                (0, 0, 255),
                2)
    
    cv2.imshow("answer", image)
    cv2.imshow("result", warped)
    cv2.waitKey(0)
    
  • result

    result.png

0

评论 (0)

取消